Download Flutter Echo Modeling
Flutter echo is a well-known acoustic phenomenon that occurs when sound waves bounce between two parallel reflective surfaces, creating a repetitive sound. In this work, we introduce a method to recreate flutter echo as an audio effect. The proposed algorithm is based on a feedback structure utilizing velvet noise that aims to synthesize the fluttery components of a reference room impulse response presenting flutter echo. Among these, the repetition time defines the length of the delay line in a feedback filter. The specific spectral properties of the flutter are obtained with a bandpass attenuation filter and a ripple filter, which enhances the harmonic behavior of the sound. Additional temporal shaping of a velvet-noise filter, which processes the output of the feedback loop, is performed based on the properties of the reference flutter. The comparison between synthetic and measured flutter echo impulse responses shows good agreement in terms of both the repetition time and reverberation time values.
Download Differentiable Feedback Delay Network for Colorless Reverberation
Artificial reverberation algorithms often suffer from spectral coloration, usually in the form of metallic ringing, which impairs the perceived quality of sound. This paper proposes a method to reduce the coloration in the feedback delay network (FDN), a popular artificial reverberation algorithm. An optimization framework is employed entailing a differentiable FDN to learn a set of parameters decreasing coloration. The optimization objective is to minimize the spectral loss to obtain a flat magnitude response, with an additional temporal loss term to control the sparseness of the impulse response. The objective evaluation of the method shows a favorable narrower distribution of modal excitation while retaining the impulse response density. The subjective evaluation demonstrates that the proposed method lowers perceptual coloration of late reverberation, and also shows that the suggested optimization improves sound quality for small FDN sizes. The method proposed in this work constitutes an improvement in the design of accurate and high-quality artificial reverberation, simultaneously offering computational savings.